Abstract

We present an optimal control framework for persistent monitoring problems where the objective is to control the movement of multiple cooperating agents to minimize an uncertainty metric in a given mission space, while seeking to maintain some upper bound constraints on uncertainty values. In a one-dimensional mission space, we show that the optimal solution is for each agent to move at maximal speed from one switching point to the next, possibly waiting some time at each point before reversing its direction. Thus, the solution is reduced to a simpler parametric optimization problem: determining a sequence of switching locations and associated waiting times at these switching points for each agent. This amounts to a hybrid system which we analyze using Infinitesimal Perturbation Analysis (IPA) to obtain a complete on-line solution through a gradient-based algorithm.We also show that the solution is robust with respect to the uncertainty model used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.