Abstract

Modulation of single-cell responses by compound stimuli (target plus flankers) extending outside the cell’s receptive field (RF) may represent an early neural mechanism for encoding objects in visual space, enhancing their perceptual saliency. The spatial extent of contextual modulation is wide. The size of the RF is known to be dynamically variable. It has been suggested that RF expansion when target contrast decreases is the real cause of effects attributed to modulation by flankers. This is not the case. We directly compared, in the same cells, the extent of RF size changes when stimulus contrast decreased with that revealed by systematically changing the target-and-collinear-flankers separation. We found that RF expansion at low contrast was not universal, and that the spatial extent of RF expansion, when it existed, was smaller than that of collinear flanker modulation. We conclude that the two processes in striate cortex work independently from each other.Electronic supplementary materialThe online version of this article (doi:10.1007/s00221-009-2057-1) contains supplementary material, which is available to authorized users.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call