Abstract
We have studied non-stationary and non-axisymmetric perturbations of a magnetohydrodynamic accretion onto a rotating (Kerr) black hole. Assuming that the magnetic field dominates the plasma accretion, we find that the accretion suffers a large radial acceleration resulting from the Lorentz force, and becomes highly variable compared with the electromagnetic field there. In fact, we further find an interesting perturbed structure of the plasma velocity with a large peak in some narrow region located slightly inside of the fast-magnetosonic surface. This is due to the concentrated propagation of the fluid disturbances in the form of fast-magnetosonic waves along the separatrix surface. If the fast-magnetosonic speed is smaller in the polar regions than in the equatorial regions, the critical surface has a prolate shape for radial poloidal field lines. In this case, only the waves that propagate towards the equator can escape from the super-fast-magnetosonic region and collimate polewards as they propagate outwards in the sub-fast-magnetosonic regions. We further discuss the capabilities of such collimated waves in accelerating particles due to cyclotron resonance in an electron-positron plasma.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have