Abstract
We have employed neutron Brillouin spectroscopy to study coherent collective density fluctuations in the biological macromolecular components of living Escherichia coli cells. To highlight the contribution of the macromolecular material alone, a suitably prepared mixture of light and heavy water was exploited to cancel the scattering length of intracellular water. The present results indicate that the cellular biomaterial sustains THz coherent density fluctuations, characterised by a propagating mode travelling at about 3600m/s and by a localised mode at energies between 4 and 7meV. A comparison with both hydration water and simpler biomolecules, such as proteins or DNA, brings further support to the idea that the dynamical coupling between biomolecular structures and biological water provides the delicate dynamical adaptation needed to achieve a full biological functionality. Finally, the behaviour of the damping factors of the observed collective modes strengthens the dynamical similarity of biological systems with glass-forming materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.