Abstract
By a detailed experimental study of THz dynamics in the ribonuclease protein, we could detect the propagation of coherent collective density fluctuations within the protein hydration shell. The emerging picture indicates the presence of both a dispersing mode, traveling with a speed greater than 3000 m/s, and a nondispersing one, characterized by an almost constant energy of 6-7 meV. In agreement with molecular dynamics simulations [Phys. Rev. Lett. 2002, 89, 275501], the features of the dispersion curves closely resemble those observed in pure liquid water [Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2004, 69, 061203]. On the contrary, the observed damping factors are much larger than in bulk water, with the dispersing mode becoming overdamped at Q = 0.6 A(-1) already. Such novel experimental findings are discussed as a dynamic signature of the disordering effect induced by the protein surface on the local structure of water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.