Abstract

An attractive proposal for the hidden order (HO) in the heavy electron compound URu2Si2 is an itinerant multipole order of high rank. It is due to the pairing of electrons and holes centered on zone center and boundary, respectively in states that have maximally different total angular momentum components. Due to the pairing with commensurate zone boundary ordering vector the translational symmetry is broken and a HO quasiparticle gap opens below the transition temperature T_HO. Inelastic neutron scattering (INS) has demonstrated that for T<T_HO the collective magnetic response is dominated by a sharp spin exciton resonance at the ordering vector Q that is reminiscent of spin exciton modes found inside the gap of unconventional superconductors and Kondo insulators. We use an effective two-orbital tight binding model incorporating the crystalline electric field effect to derive closed expressions for quasiparticle bands reconstructed by the multipolar pairing terms. We show that the magnetic response calculated within that model exhibits the salient features of the resonance found in INS. We also use the calculated dynamical susceptibility to explain the low temperature NMR relaxation rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.