Abstract

Creep experiments on polycrystalline surfactant hexagonal columnar phases show a power law regime, followed by a drastic fluidization before reaching a final stationary flow. The scaling of the fluidization time with the shear modulus of the sample and stress applied suggests that the onset of flow involves a bulk reorganization of the material. This is confirmed by x-ray scattering under stress coupled to in situ rheology experiments, which show a collective reorientation of all crystallites at the onset of flow. The analogy with the fracture of heterogeneous materials is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.