Abstract
The balletic motion of bird flocks, fish schools, and human crowds is believed to emerge from local interactions between individuals in a process of self-organization. The key to explaining such collective behavior thus lies in understanding these local interactions. After decades of theoretical modeling, experiments using virtual crowds and analysis of real crowd data are enabling us to decipher the “rules of engagement” governing these interactions. On the basis of such results, my students and I built a dynamical model of how a pedestrian aligns his or her motion with that of a neighbor and how these binary interactions are combined within a neighborhood of interaction. Computer simulations of the model generate coherent motion at the global level and reproduce individual trajectories at the local level. This approach has yielded the first experiment-driven, bottom-up model of collective motion, providing a basis for understanding more complex patterns of crowd behavior in both everyday and emergency situations.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have