Abstract
AbstractThe effects of collective motion in DNA as reflected by resonance coupling among its intact segments have been discussed for both linear and circular DNA molecules. The results indicate that due to the effects of this kind of internal collective motion, the energy will be at times highly concentrated at some spots. As a result of the overfocus of energy, the stress built up along the direction of hydrogen bonds between complementary base pairs will be dramatically increased, rupturing a series of consecutive hydrogen bonds simultaneously and resulting in a suddenly free jerk, such that the DNA molecule will undergo a local “quake.” The “hole” formed by this kind of quake‐like motion will be large enough for bulky drugs to gain entrance and intercalate into DNA. Even for smaller drugs, this local quake‐like motion can also provide a significant mode of entry for intercalation. Energy minimizations carried out for DNA–drug complexes indicate that, for most drugs, a distortion or disruption of 2 to 4 base pairs occurs at the intercalation site in DNA molecules.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have