Abstract

We discuss four prescriptions for evaluating a collective mass parameter suitable for translations, rotations and large amplitude collective motions. These are the adiabatic time dependent Hartree-Fock theory (ATDHF) and the generator coordinate method (GCM), both with and without curvature corrections. As practical example we consider the16O+16O collision using a recently developed density dependent interaction with direct Yukawa and Coulomb terms. We present a fast iteration scheme for solving the linear response equation in a three-dimensional coordinate or momentum space grid. As test cases we consider the rotational and translational inertia parameters for various distances between the heavy ions. We find that curvature corrections are negligible whereas the difference between ATDHF and GCM may amount to about 35% in case of rotation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.