Abstract

Entity disambiguation involves mapping mentions in texts to the corresponding entities in a given knowledge base. Most previous approaches were based on handcrafted features and failed to capture semantic information over multiple granularities. For accurately disambiguating entities, various information aspects of mentions and entities should be used in. This article proposes a hierarchical semantic similarity model to find important clues related to mentions and entities based on multiple sources of information, such as contexts of the mentions, entity descriptions and categories. This model can effectively measure the semantic matching between mentions and target entities. Global features are also added, including prior popularity and global coherence, to improve the performance. In order to verify the effect of hierarchical semantic similarity model combined with global features, named HSSMGF, experiments were carried out on five publicly available benchmark datasets. Results demonstrate the proposed method is very effective in the case that documents have more mentions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.