Abstract
AbstractIt is shown that the collective dust‐dust attraction is enhanced by strong magnetic fields larger then the critical magnetic field determined be the condition that the Lorentz force acting on ions is larger than the friction of ions on dust grains related with the dust drag. It is demonstrated that with an increase of the magnetic field the deepness of the attraction potential well is increased in all directions to the magnetic field, that the distance of the minimum of the potential well along the magnetic filed (in both directions) is changed only slightly while the distance of the minimum of the attraction potential well is substantially decreased for directions perpendicular to the magnetic field. This means that the structures formed by attraction forces such as plasma crystals will be compressed perpendicular to the magnetic field (inter‐dust distance becomes smaller) and that the melting transition temperature should increased with an increase of the strength of the magnetic field. Numerical results are presented for dependence of the attraction potential well on the ratio of the strength of the magnetic field to the critical magnetic field strength, on the parameter P = ndZd/ni (nd and ni being the dust and ion densities respectively) and on the temperature ratio τ = Ti/Te (Te and Ti being the electron and ion temperatures respectively). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have