Abstract

Collective decision-making is predicted to be more egalitarian in conditions where the costs of group fission are higher. Here, we ask whether Trinidadian guppies (Poecilia reticulata) living in high or low predation environments, and thereby facing differential group fission costs, make collective decisions in line with this prediction. Using a classic decision-making scenario, we found that fish from high predation environments switched their positions within groups more frequently than fish from low predation environments. Because the relative positions individuals adopt in moving groups can influence their contribution towards group decisions, increased positional switching appears to support the prediction of more evenly distributed decision-making in populations where group fission costs are higher. In an agent-based model, we further identified that more frequent, asynchronous updating of individuals' positions could explain increased positional switching, as was observed in fish from high predation environments. Our results are consistent with theoretical predictions about the structure of collective decision-making and the adaptability of social decision-rules in the face of different environmental contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.