Abstract

BackgroundIn the drug discovery field, natural products deemed a precious source of novel lead compounds. They have the ability to bypass or overcome multidrug resistance (MDR) in cancer cells. PurposeIn this study, the natural polyphenolic stilbene resveratrol (RES) has been studied for its cytotoxic activity toward MDR cancer cells. MethodsResazurin assay was used to investigate the cytotoxicity of RES not only against a panel of drug-resistant cancer cells overexpressing P-glycoprotein/ABCB1, BCRP/ABCG2, ABCB5 (ATP-binding cassette transporters), but also mutation-activated EGFR. The assessment of proteins expression was done by Western blot analysis. COMPARE and hierarchical cluster analyses were applied to identify, which genes correlate with sensitivity or resistance to RES. The NF-κB activation was evaluated using NF-kB reporter cells assay. ResultsInterestingly, MDR cells overexpressing ABCB5 and mutation-activated EGFR were collateral sensitive (CS) to RES. Our immunoblotting analysis highlighted that CS may be attributed to RES-induced sirtuin 1 (SIRT1) overexpression. Indeed, the SIRT1 inhibitor, sirtinol completely abolished CS to RES, indicating a causative role of SIRT1 for CS to RES. In addition, COMPARE and hierarchical cluster analyses of transcriptomic data indicated genes associated with diverse cellular mechanisms ranging from the immune response, inflammation signaling, and microtubule formation to cell migration. Searching for transcription factor binding motifs in the promoters of these genes pointed to NF-κB as one of the master regulators related to RES activity. ConclusionThe findings demonstrate that RES alone or in combination with established chemotherapeutic agents might overcome the refractory tumors. This information may be immensely useful for the development of personalized treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.