Abstract

Multidrug resistance (MDR) represents an obstacle in anti-cancer therapy. MDR is caused by multiple mechanisms, involving ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp), which reduces intracellular drug levels to sub-therapeutic concentrations. Therefore, sensitizing agents retaining effectiveness against apoptosis- or drug-resistant cancers are desired for the treatment of MDR cancers. The sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) pump is an emerging target to overcome MDR, because of its continuous expression and because the calcium transport function is crucial to the survival of tumor cells. Previous studies showed that SERCA inhibitors exhibit anti-cancer effects in Bax-Bak-deficient, apoptosis-resistant and MDR cancers, whereas specific P-gp inhibitors reverse the MDR phenotype of cancer cells by blocking efflux of chemotherapeutic agents. Here, we unraveled SERCA and P-gp as double targets of the triterpenoid, celastrol to reverse MDR. Celastrol inhibited both SERCA and P-gp to stimulate calcium-mediated autophagy and ATP depletion, thereby induced collateral sensitivity in MDR cancer cells. In vivo studies further confirmed that celastrol suppressed tumor growth and metastasis by SERCA-mediated calcium mobilization. To the best of our knowledge, our findings demonstrate collateral sensitivity in MDR cancer cells by simultaneous inhibition of SERCA and P-gp for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.