Abstract

One of the main features of the Majorana state, which attracts a considerable current interest to these excitations in solid-state systems, is related to its nonlocal character. It is demonstrated that the direct consequence of such nonlocality is the collapse of the Fano resonance manifesting itself in the conductance of an asymmetric interference device, the arms of which are connected by a one-dimensional topological superconductor. In the framework of the spinless model, it is shown that the predicted effect is associated with an increase in the multiplicity of the degeneracy of the zero-energy state of the structure arising at a specific case of the Kitaev model. Such an increase leads to the formation of a bound state in the continuum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.