Abstract

A bound state in the continuum (BIC) is a localized state of an open structure with access to radiation channels, yet it remains highly confined with, in theory, an infinite lifetime and quality factor. There have been many realizations of such exceptional states in dielectric systems without loss. However, realizing BICs in lossy systems such as those in plasmonics remains a challenge. In this Letter, we explore the possibility of realizing BICs in a hybrid plasmonic-photonic structure consisting of a plasmonic grating coupled to a dielectric optical waveguide with diverging radiative quality factors. The plasmonic-photonic system supports two distinct groups of BICs: symmetry-protected BICs at the Γ point and off-Γ Friedrich-Wintgen BICs. The photonic waveguide modes are strongly coupled to the gap plasmons in the grating, leading to an avoided crossing behavior with a high value of Rabi splitting of 150meV. Moreover, we show that the strong coupling significantly alters the band diagram of the hybrid system, revealing opportunities for supporting stopped light at an off-Γ wide angular span.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call