Abstract

AbstractGeochemical and geomechanical perturbations of the subsurface caused by the injection of fluids present risks of leakage and seismicity. This study investigated how acidic fluid flow affects hydraulic and frictional properties of fractures using experiments with 3.8‐cm‐long specimens of Eagle Ford shale, a laminated shale with carbonate‐rich strata. In low‐pressure flow cells, one set of samples was exposed to acidic brine and another set was exposed to neutral brine. X‐ray computed tomography and energy‐dispersive X‐ray spectroscopy revealed that samples exposed to acidic brine were calcite‐depleted and had developed a porous altered layer, while the other set showed no evidence of alteration. After reaction, samples were compressed and sheared in a triaxial cell that supplied normal stress and differential pore pressure at prescribed sliding velocities, independently measuring friction and permeability. During the initial compression, the porous altered layer collapsed into fine particles that filled the fracture. This effectively impeded flow and sealed the fracture, resulting in fracture permeability to decrease 1 to 2 orders of magnitude relative to the unaltered fractures. This is a favorable outcome in subsurface applications where the goal is to reduce leakage risks. However, during shear the reacted fracture had lower frictional strength because the fine‐grained particles in the collapsed layer prevented the formation of interlocking microasperities. Therefore, coupled geochemical and geomechanical processes that could favorably seal fractures could also increase the likelihood of induced seismicity. These findings have important implications for geological carbon sequestration, pressurized fluid energy storage, geothermal energy, and other subsurface technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.