Abstract

AbstractWe conducted a series of rotary‐shear friction experiments on ground dolerite gouges, in which the amount of adsorbed moisture increases with grinding time (tgr), at room temperature and humidity, a normal stress of 2 MPa, and constant equivalent slip rates (Veqs) ranging from 20 µm/s to 1.3 m/s. Their frictional strength changed with Veq and tgr in three different ways depending on Veq and the gouge temperature (T). At Veq ≤ 1.3 cm/s, T did not exceed 80°C, and the steady state friction coefficient (μss) ranged from 0.59 to 0.80. μss changes little with Veq, while μss at a given Veq systematically increases with tgr probably due to moisture‐adsorbed strengthening of gouges. At Veq = 4 cm/s, T exceeded 100°C, and dehydration of gouges resulted in roughly the same μss values (0.60–0.66) among gouges with different periods of tgr. At Veq ≥ 13 cm/s, T reached 160–500°C, and μss dramatically decreases with Veq to 0.08–0.26 at Veq = 1.3 m/s, while μss at a given Veq systematically decreases with tgr. At these fast Veqs, dehydration of gouges likely occurred too fast for water vapor to completely escape out from the gouge layer. Therefore, faster dehydration at faster Veq possibly resulted in a larger pore pressure increase and lower frictional strength. In addition, because gouges with longer periods of tgr contain larger amounts of adsorbed moisture, they became weaker due to larger increases in pore pressure and hence larger amounts of reduction in frictional strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.