Abstract

Collagen and poly(vinyl alcohol) films as topical drug delivery systems were developed by plasticization with glycerol and different concentrations of choline acetate ([Cho]Ac) ionic liquid (IL). The results showed that [Cho]Ac improved the performance of the materials and can serve as an alternative to synthetic plasticizers such as glycerol. Ciprofloxacin (CIP) was used as a model drug to study its release behavior. Ready-to-use films were characterized for their optical opacity, solubility, swelling, mechanical properties, water contact angle, surface morphology, surface roughness, antioxidant, and antimicrobial activities. Moreover, X-ray diffraction and Fourier Transform Infrared (FTIR) studies were carried out for molecular characterization of the films. [Cho]Ac used as a plasticizing agent showed excellent antioxidant properties, mechanical strength, and UV shielding properties. Further, [Cho]Ac improves the roughness and decreases the solubility of films. The in vitro release behavior of CIP was investigated at physiological pH (7.4), and the results showed that CIP was released in a more controlled manner due to the incorporation of [Cho]Ac into the films' matrix, while the films constructed with glycerol exhibited burst release of CIP. Moreover, the films loaded with CIP showed excellent antibacterial activity against Gram-negative (Escherichia coli) as well as Gram-positive (Staphylococcus aureus) bacteria. This study provides insight into the use of choline-based ILs as plasticizing agents for the fabrication of protein-polymer composite films for wound dressing and many other applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call