Abstract

Type I collagen (Col I) and hyaluronic acid (HA), derived from the extracellular matrix (ECM), have found widespread application in cartilage tissue engineering. Nevertheless, the potential of cell-free collagen-based scaffolds to induce in situ hyaline cartilage regeneration and the related mechanisms remain undisclosed. Here, we chose Col I and HA to construct Col I hydrogel and Col I-HA composite hydrogel with similar mechanical properties, denoted as Col and ColHA, respectively. Their potential to induce cartilage regeneration was investigated. The results revealed that collagen-based hydrogels could regenerate hyaline cartilage without any additional cells or growth factors. Notably, ColHA hydrogel stood out in this regard. It elicited a moderate activation, recruitment, and reprogramming of macrophages, thus efficiently mitigating local inflammation. Additionally, ColHA hydrogel enhanced stem cell recruitment, facilitated their chondrogenic differentiation, and inhibited chondrocyte fibrosis, hypertrophy, and catabolism, thereby preserving cartilage homeostasis. This study augments our comprehension of cartilage tissue induction theory by enriching immune-related mechanisms, offering innovative prospects for the design of cartilage defect repair scaffolds. Statement of SignificanceThe limited self-regeneration ability of articular cartilage and post-injury inflammation poses significant challenges to its repair. Type I collagen (Col I) and hyaluronic acid (HA) are extensively used in cartilage tissue engineering. However, their specific roles in cartilage regeneration remain poorly understood. This study aimed to elucidate the functions of Col I and Col I-HA composite hydrogels (ColHA) in orchestrating inflammatory responses and promoting cartilage regeneration. ColHA effectively activated and recruited macrophages, reprogramming them from an M1 to an M2 phenotype, thus alleviating local inflammation. Additionally, ColHA facilitated stem cell homing, induced chondrogenesis, and concurrently inhibited fibrosis, hypertrophy, and catabolism, collectively contributing to the maintenance of cartilage homeostasis. These findings underscore the clinical potential of ColHA for repairing cartilage defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call