Abstract
The effects of collagen peptides (CPs), which are derived from crucian skin, were investigated in a retinoic acid-induced bone loss model. The level of serum bone alkaline phosphatase (BALP) in the model group (117.65 ± 4.66 units/L) was significantly higher than those of the other three groups (P < 0.05). After treatment with 600 and 1200 mg of CPs/kg, the level of BALP decreased to 85.26 ± 7.35 and 97.03 ± 7.21 units/L, respectively. After treatment with 600 mg of CPs/kg, the bone calcium content significantly increased by 22% (femur) and 12.38% (tibia) compared to those of the model group. In addition, the bone mineral density in the 600 mg of CPs/kg group was significantly higher (femur, 0.37 ± 0.02 g/cm2; tibia, 0.33 ± 0.02 g/cm2) than in the model group (femur, 0.26 ± 0.01 g/cm2; tibia, 0.23 ± 0.02 g/cm2). The morphology results indicated bone structure improved after the treatment with CPs. Structural characterization demonstrated that Glu, Lys, and Arg play important roles in binding calcium and promoting calcium uptake. Our results indicated that CPs could promote calcium uptake and regulate bone formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.