Abstract

Mimicking triple helix and fibrillar network of collagen through collagen model peptide(CMP) with short GPO tripeptide repeats is a great challenge. Herein, a minimalistic CMP comprising only five GPO repeats [(GPO)5 ] is presented. This novel approach involves the fusion of ultrashort peptide with the synergetic power of π-system and β-sheet formation to short CMP (GPO)5 . Accordingly, a hydrogel-forming, fluorenylmethoxycarbonyl (Fmoc)-functionalized ultrashort peptide (NFGAIL) is fused at the N-terminus and phenylalanine at the C-terminus of (GPO)5 (Fmoc-NFGAIL-(GPO)5 -F-COOH, FmP-5GPO). At room temperature, it forms a robust triple helix in aqueous buffer solution and has a relatively high melting point of 35°C. The fluorenyl motifstabilizesthe triple helix by aromatic π-πinteractions as in its absence, triple helix is not formed.NFGAIL, which forms a β-sheet, also aids in triple helixstabilizationvia intermolecular hydrogen bonding and hydrophobic interactions. FmP-5GPO forms highly entangled nanofibrils with a micrometer length, which have excellent cell viability. The achievement of stable triple helix and fibrils in such a short CMP(FmP-5GPO) sequence is a challenging feat, and its significance in CMP-based biomaterials is undeniable. The present strategy highlights the potential for developing new CMP sequences through intelligent tuning of fusion peptides and GPO repeats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call