Abstract

Soft tissue substitutes have been developed to treat gingival recessions to avoid a second surgical site. However, products of pure collagen for clinical application lack their original mechanical strengths and tend to degrade fast in vivo. In this study, a collagen-based scaffold crosslinked with oxidized sodium alginate (OSA-Col) was developed to promote mechanical properties. Compared with commercial products collagen matrix (CM) and collagen sponge (CS), OSA-Col scaffolds presented higher wet-state cyclic compressibility, early anti-degradation ability, similar hemocompatibility and cytocompatibility. Furthermore, in the subcutaneous implantation experiment, OSA2-Col3 scaffolds showed better anti-degradation performance than CS scaffolds and superior neovascularization than CM scaffolds. These results demonstrated that OSA2-Col3 scaffolds had potential as a new soft tissue substitute for the treatment of gingival recessions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call