Abstract

Biocompatible polymer microneedles (MNs) are emerging as a promising platform for transdermal drug delivery, especially for facial treatments. Therefore, an MN patch in this study uses hydrolyzed collagen (HC) contained in skin cells as the main raw material and adopts a two-step cast method to develop a rapidly dissolving microneedle (DMN) to deliver collagen in a simple and minimally invasive way, allowing the release of the encapsulated drug in the skin. By optimizing the formulation and proportion of HC and auxiliary support materials, the mechanical strength required to pierce the skin is obtained, while the soft pedestal allows for flexibility in application. The DMNs can dissolve completely in the skin within 15min and release within ≈ 8h, and do not cause toxicity or irritation when being applied. In contrast to the ineffectiveness of oral and external application, and the high risk of dermal injection, drug-loaded DMNs overcome the drawbacks of traditional methods with direct penetration and minimally invasive manner, enabling efficient and safe treatment. The successful preparation and research of HC DMNs have innovative and practical significance in this field, and it is expected to become a simple, effective, and popular transdermal drug delivery platform for cosmetics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call