Abstract

The objective of the present study was to fabricate microneedles for delivering lipophilic active ingredients (APIs) using digital light processing (DLP) printing technology and quality by design (QbD) supplemented by artificial intelligence (AI) algorithms. In the present study, dissolvable microneedle (MN) patches using ibuprofen (IBU) as a model drug were successfully fabricated with DLP printing technology at ∼ 750 μm height, ∼250 μm base diameter, and tip with radius of curvature (RoC) of ∼ 15 μm. MN patches were comprised of IBU, photoinitiator, Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), polyethylene glycol dimethacrylate (PEGDAMA)550 and distilled water and were developed using the QbD optimization approach. Optimization of print fidelity and needle morphology were achieved using AI implementing a semi-supervised machine learning approach. Mechanical strength tests demonstrated that IBU MNs formed pores both on Parafilm M® and human cadaver skin. IBU-MNs consisting of 0.23 %w/v and 0.49 %w/v LAP with 10 %w/v water showed ∼ 2 mg/cm2 sustained drug permeation at 72 h in skin permeation experiments with flux of ∼ 40 μg/cm2/h. Pharmacokinetic studies in rats displayed biphasic rapid first-order absorption with sustained zero-order input of Ko = 150ug/hr, AUC0-48h = 62812.02 ± 11128.39 ng/ml*h, Tmax = 2.66 ± 1.12 h, and Cmax = 3717.43 ± 782.25 ng/ml (using 0.23 %w/v LAP IBU MN patch). An in vitro in vivo relation (IVIVR) was conducted identifying a polynomial relationship between patch release and fraction absorbed in vivo. This study demonstrates fabrication of dissolvable DLP-printed microneedle patches for lipophilic API delivery with biphasic rapid first-order and sustained zero-order release.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.