Abstract

The growth of global data is increasing exponentially, leading to a greater demand for computing power. To address this requirement, expanding computing power from the cloud to the edge is essential. However, this transformation presents two significant challenges: how to share computing resources more efficiently and how to optimize resource allocation. To tackle these challenges, we propose a three-layer Computing Power Network (CPN) framework that focuses on implementing the collaborative allocation of computing nodes and user tasks. We formulate the resource allocation problem in CPN as a double auction game and use an experience-weighted attraction algorithm that enables participants to adjust bidding strategies based on environmental interactions. We implemented a prototype of our proposed CPN framework and conducted extensive experiments to verify our algorithm’s convergence and evaluate the benefits obtained by buyers (users) and sellers (computing nodes) from the perspective of transaction prices, rewards, and average pricing. The comprehensive experimental results demonstrate the effectiveness of our proposed method. Compared with state-of-the-art pricing strategies, our approach achieves a 20% increase in convergence speed and an 88% increase in overall returns. Furthermore, it also exhibits a 2.5% increase in deal prices and a substantial 83% rise in the income of individual users. These outcomes convincingly prove the superiority of our method in achieving better convergence, improving overall returns, and benefiting both buyers and sellers in the CPN resource auction market.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.