Abstract
This study proposes a task-offloading and resource allocation strategy in multidomain cooperation (TARMC) for the industrial Internet of Things (IIoT) to resolve the problem of the non-uniform distribution of task computation among various cluster domain networks in the IIoT and the solidification of traditional industrial wireless network architecture, which produces low efficiency of static resource allocation and high delay in closed-loop data processing. Based on the closed-loop process of task interaction of intelligent terminals in wireless networks, the proposed strategy constructs a network model of multidomain collaborative task-offloading and resource allocation in IIoT for flexible and dynamic resource allocation among intelligent terminals, edge servers, and cluster networks. Considering the partial offloading mechanism, various tasks were segmented into multiple subtasks marked at bit-level per demand, which enabled local and edge servers to process all subtasks in parallel. Moreover, this study established a utility function for the closed-loop delay and terminal energy consumption of task processing, which transformed the process of multidomain collaborative task-offloading and resource allocation into the problem of task computing revenue. Furthermore, an improved Cuckoo Search algorithm was developed to derive the optimal offloading position and resource allocation decision through an alternating iterative method. The simulation results revealed that TARMC performed better than strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.