Abstract
Learning discriminant face representation for pose-invariant face recognition has been identified as a critical issue in visual learning systems. The challenge lies in the drastic changes of facial appearances between the test face and the registered face. To that end, we propose a high-level feature learning framework called "collaborative random faces (RFs)-guided encoders" toward this problem. The contributions of this paper are three fold. First, we propose a novel supervised autoencoder that is able to capture the high-level identity feature despite of pose variations. Second, we enrich the identity features by replacing the target values of conventional autoencoders with random signals (RFs in this paper), which are unique for each subject under different poses. Third, we further improve the performance of the framework by incorporating deep convolutional neural network facial descriptors and linking discriminative identity features from different RFs for the augmented identity features. Finally, we conduct face identification experiments on Multi-PIE database, and face verification experiments on labeled faces in the wild and YouTube Face databases, where face recognition rate and verification accuracy with Receiver Operating Characteristic curves are rendered. In addition, discussions of model parameters and connections with the existing methods are provided. These experiments demonstrate that our learning system works fairly well on handling pose variations.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have