Abstract
The multi-mode green internet of things (IoT) provides a communication support for social assets of smart park connecting to power grid for low-carbon operation. Software defined networking (SDN) and network function virtualization (NFV) can flexibly integrate heterogeneous communication modes through network resource scheduling and route management. However, the joint optimization of virtual network functions (VNF) embedding and flow scheduling faces several challenges of differentiated QoS guarantee, coupling and externality of VNF embedding, and route selection conflicts. In this work, a multi-timescale VNF Embedding and floW Scheduling algorithm named NEWS is proposed to maximize throughput while reducing VNF embedding cost and energy consumption. Specifically, the joint optimization problem is transformed into three subproblems, i.e., large-timescale VNF embedding, small-timescale admission control, small-timescale route selection and computation resource allocation. A swap matching-based low-cost VNF embedding algorithm is proposed for the first subproblem. Then, a queue backlog threshold-based admission control strategy is proposed for the second subproblem. Next, the third subproblem is decomposed into two stages, where a collaborative Q-learning-based backpressure-aware algorithm is presented in the first stage, and a greedy-based computation resource allocation algorithm is given in the second stage. Simulations demonstrate that NEWS performs superior in throughput, embedding cost, and energy consumption.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Green Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.