Abstract

The emerging 5G mobile network is a prominent technology for addressing networking related challenges of Internet of Things (IoT). The forthcoming 5G is expected to allow low-power massive IoT devices to produce high volumes of data that can be transmitted over ultra-reliable, low-latency wireless communication services. However, IoT systems encounter several security and privacy issues to prevent unauthorized access to IoT nodes. To address these challenges, this paper introduces a novel blockchain-based architecture that leverages Software Defined Network (SDN) and Network Function Virtualization (NFV) for securing IoT transactions. A novel security appliance is introduced in a form of Virtualized Network Functions (VNFs) for improving the scalability and performance of IoT networks. Then, we introduce a novel consensus algorithm to detect and report suspected IoT nodes and mitigate malicious traffic. We evaluate and compare our proposed solution against three well-known consensus algorithms, i.e., Proof of Work (PoW), Proof of Elapsed Time (PoET), and Proof of Stake (PoS). We demonstrate that the proposed solution provides substantially lower latency and higher throughput as well as trustworthy IoT communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call