Abstract
Data extraction from the published literature is the most laborious step in conducting living systematic reviews (LSRs). We aim to build a generalizable, automated data extraction workflow leveraging large language models (LLMs) that mimics the real-world 2-reviewer process. A dataset of 10 trials (22 publications) from a published LSR was used, focusing on 23 variables related to trial, population, and outcomes data. The dataset was split into prompt development (n = 5) and held-out test sets (n = 17). GPT-4-turbo and Claude-3-Opus were used for data extraction. Responses from the 2 LLMs were considered concordant if they were the same for a given variable. The discordant responses from each LLM were provided to the other LLM for cross-critique. Accuracy, ie, the total number of correct responses divided by the total number of responses, was computed to assess performance. In the prompt development set, 110 (96%) responses were concordant, achieving an accuracy of 0.99 against the gold standard. In the test set, 342 (87%) responses were concordant. The accuracy of the concordant responses was 0.94. The accuracy of the discordant responses was 0.41 for GPT-4-turbo and 0.50 for Claude-3-Opus. Of the 49 discordant responses, 25 (51%) became concordant after cross-critique, increasing accuracy to 0.76. Concordant responses by the LLMs are likely to be accurate. In instances of discordant responses, cross-critique can further increase the accuracy. Large language models, when simulated in a collaborative, 2-reviewer workflow, can extract data with reasonable performance, enabling truly "living" systematic reviews.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have