Abstract
With the development of personalized recommendations, information overload has been alleviated. However, the sparsity of the user-item rating matrix and the weak transitivity of trust still affect the recommendation accuracy in complex social network environments. Additionally, collaborative filtering based on users is vulnerable to shilling attacks due to neighbor preference recommendation. With the objective of overcoming these problems, a collaborative filtering recommendation method based on trust and emotion is proposed in this paper. First, we employ a method based on explicit and implicit satisfaction to alleviate the sparsity problems. Second, we establish trust relationships among users using objective and subjective trust. Objective trust is determined by similarity of opinion, including rating similarity and preference similarity. Subjective trust is determined by familiarity among users based on six degrees of separation. Third, based on the trust relationship, a set of trusted neighbors is obtained for a target user. Next, to further exclude malicious users or attackers from the neighbors, the set is screened according to emotional consistency among users, which is mined from implicit user behavior information. Finally, based on the ratings of items by the screened trusted neighbors and the trust relationships among the target user and these neighbors, we can obtain a list of recommendations for the target user. The experimental results show that the proposed method can improve the recommendation accuracy in the case of data sparsity, effectively resist shilling attacks, and achieve higher recommendation accuracy for cold start users compared to other methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.