Abstract
A SVD signs based trust and distrust clustering method is proposed.A trust inference method is proposed to compute indirect trust between users.A trust neighbors mining algorithm is proposed to discover trust users.A sparse rating complement algorithm is proposed to get dense user rating profiles.The TCCF method is efficient in terms of prediction accuracy and coverage. Clustering based recommender systems have been demonstrated to be efficient and scalable to large-scale datasets. However, due to the employment of dimensionality reduction techniques, clustering based recommendation approaches generally suffer from relatively low accuracy and coverage. To tackle these problems, some trust clustering based recommendation methods are proposed which cluster the social trust information other than the user-item ratings. Existing trust clustering based recommendation algorithms only consider trust relationships, regardless of the distrust information. In addition, these methods simply perform traditional collaborative filtering method in the detected trust communities, which cannot handle the data sparsity and cold start problems effectively. In order to solve these issues, in this paper, an explicit trust and distrust clustering based collaborative filtering recommendation method is proposed. Firstly, a SVD signs based clustering algorithm is proposed to process the trust and distrust relationship matrix in order to discover the trust communities. Secondly, a sparse rating complement algorithm is proposed to generate dense user rating profiles which alleviates the sparsity and cold start problems to a very large extent. Finally, the prediction of missing ratings can be obtained by combining the newly generated user rating profiles and the traditional collaborative filtering algorithm. Experimental results on real-world dataset demonstrate that our approach can effectively improve both the accuracy and coverage of recommendations as well as in the cold start situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.