Abstract

For realizing environment protection and carbon emission reduction strategy, the dominant position of renewable energy in the future power system has been clarified. Planning economic and efficient flexible resource system is the basis to balance multi fluctuations caused by large amount of renewable energy integration and ensure the safe operation of the whole power system. Considering that the flexibility adjustment demands of different links of the power system are not independent, but influence and restrict each other, this paper focuses on how to collaboratively allocate multi-flexible resources and achieve corresponding balancing interaction strategy. Firstly, a flexible resource system is composed through a fuzzy TODIM improved PROMETHEE-II model. Secondly, a multi-flexible resource collaborative allocation optimization model is proposed, which considers the Stackelberg game relationship of flexibility adjustment demand and ability in different links of the power system under varied fluctuation scenarios. The scientificity and effectiveness of the proposed model are verified by a practical case, and key incentive factors and specific development suggestions for improving flexible resources application efficiency are identified simultaneously. Since the collaborative planning of flexible resource system have not been deeply discussed by scholars yet, thus, this research contributes to the literature and expand the knowledge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call