Abstract

One of the most popular approaches to improve the performance of organic photonic devices has been to control the electrically heterogeneous charge-transferring interfaces via chemical modifications. Despite intense research efforts, however, the rapid pace of material evolution through the chemical versatility of the organic compound allows only limited room for the fine-tuning of the interfaces exclusive to specific materials. This limitation leads to an ill-controlled charge recombination behavior that relies solely on the inherent characteristics of each material; thus, the common device architecture cannot harness its full potential. In this work, we demonstrate the use of a graphene-organic hybrid barristor-type phototriode architecture as an alternative platform to realize a linearly and highly photosensitive photodetector operating in a broad dynamic range with rapid temporal responses. With the capability of interfacial energetic modulation, our model system exhibits the dominance of swiftly saturable and slowly responding "cold" traps (TC < 3kT) in charge recombination behaviors, leading to a broad linear dynamic range of 110 dB as well as unconventional illumination-driven increments of both D* and R up to 1013 Jones and 360 mA/W, respectively, that surpass the best-reported organic photodiodes. Our findings demonstrate that the organic-graphene hybrid photonic barristor architecture can open new avenues to design high-performance photodetectors for various photonic applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.