Abstract
A major challenge in collaborative filtering based recommender systems is how to provide recommendations when rating data is sparse or entirely missing for a subset of users or items, commonly known as the cold-start problem. In recent years, there has been considerable interest in developing new solutions that address the cold-start problem. These solutions are mainly based on the idea of exploiting other sources of information to compensate for the lack of rating data. In this paper, we propose a novel algorithmic framework based on matrix factorization that simultaneously exploits the similarity information among users and items to alleviate the cold-start problem. In contrast to existing methods, the proposed algorithm decouples the following two aspects of the cold-start problem: (a) the completion of a rating sub-matrix, which is generated by excluding cold-start users and items from the original rating matrix; and (b) the transduction of knowledge from existing ratings to cold-start items/users using side information. This crucial difference significantly boosts the performance when appropriate side information is incorporated. We provide theoretical guarantees on the estimation error of the proposed two-stage algorithm based on the richness of similarity information in capturing the rating data. To the best of our knowledge, this is the first algorithm that addresses the cold-start problem with provable guarantees. We also conduct thorough experiments on synthetic and real datasets that demonstrate the effectiveness of the proposed algorithm and highlights the usefulness of auxiliary information in dealing with both cold-start users and items.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have