Abstract
Many tropical and subtropical species are sensitive to sudden temperature changes, especially drops in temperature. During winters 2009–2010 and 2010–2011, unusually cold temperatures occurred in many parts of Florida, USA, resulting in increased mortality of Florida manatees, sea turtles, fish, corals, and other species. The Florida manatee, in particular, is highly susceptible to cold stress and death when water temperatures drop below 20°C. We sought to characterize the magnitude and timing of reports of cold-related manatee carcasses in relation to fluctuations in water and air temperatures in central-east and central-west Florida during the six winters from 2008 to 2014. We used a generalized linear model to predict counts of manatee carcasses with a cold-related cause of death reported over 7-day bins in relation to various short-term (two weeks or less) and cumulative (incrementally summed from the start of the winter) heating-degree-day effects (HDD; < 20°C) and a categorical winter variable. Using water temperature data, the top-ranked model in both regions included a short-term temperature effect (14-day HDD sum) that preceded increases in reports of cold-related manatee carcasses by 7 days. Cumulative exposure to cold weather over the winter amplified effects on mortality in the central-east region. Quantifying the relationship between cold events and manatee mortality helps us prepare for rescue and salvage operations when extremely cold weather is forecast. This is especially important because anticipated loss or degradation of warm-water refuges due to human activities and sea level rise could potentially impact the manatee population in the future. These methods could also be applied to other species susceptible to cold-related mortality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.