Abstract

Direct contact condensation in the cold leg of pressurized water reactor is an important phenomenon during a postulated loss-of-coolant accident. The amount of condensation in the cold legs impacts the thermal hydraulic behavior of the reactor coolant system and eventually the integration of reactor nuclear core. A cold leg condensation model was developed for the WCOBRA/TRAC-TF2 safety analysis code. The model correlated the COSI test data and addressed the scaling issues with respect to geometry, pressure, and steam and water flow rates expected during a typical PWR LOCA. The correlation was found to be in good agreement with separate effects and integral effects experimental data and implemented in the WCOBRA/TRAC-TF2 safety analysis code. The cold leg condensation model was assessed against various small break and large break LOCA separate effects tests such as COSI experiments, ROSA experiments and UPTF experiments. Those experiments cover a wide range of cold leg dimensions, system pressures, mass flow rates, and fluid properties. All the predicted condensation results match reasonably well with the experimental data.Scalability discussions on the diameter, flow area, length, superficial velocity, Reynolds number of both cold leg and SI line, and Froude number of SI line in the Westinghouse COSI test facility were provided. The distortion of the SI jet Reynolds number is moderate. The scaling analysis together with the validation matrix covering a wide range of cold leg diameter, SI flow rate and SI Reynolds number support the scalability of the developed cold leg condensation model to the full scale PWR application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.