Abstract
Purpose: Ischemia-reperfusion injury (IRI) is a major challenge in lung transplantation often causing graft dysfunction and chronic airway illnesses in recipients. To prevent potential transplant related complications, strict guidelines were put in place to choose viable donor lungs with minimal risk of IRI. These regulations deem most of the donor organs unfit for transplant which then are donated for research to understand the mechanisms of health and diseases in human. However, resected organs that are being transported undergo cold ischemia that can negatively affect the tissue architecture and other cellular functions under study. Thus, it is important to assess how cold ischemia time (CIT) affects the physiological mechanism. In this respect, we are interested in studying how CIT affects cellular senescence in normal aging and various pulmonary pathologies. We thus hypothesized that prolonged CIT exhibits cell-type specific changes in lung cellular senescence in mice. Methods: Lung lobes from C57BL/6J (n = 5–8) mice were harvested and stored in UW Belzer cold storage solution for 0, 4-, 9-, 12-, 24-, and 48-h CIT. Lung cellular senescence was determined using fluorescence (C12FdG) assay and co-immunolabelling was performed to identify changes in individual cell types. Results: We found a rapid decline in the overall lung cellular senescence after 4-h of CIT in our study. Co-immunolabelling revealed the endothelial cells to be most affected by cold ischemia, demonstrating significant decrease in the endothelial cell senescence immediately after harvest. Annexin V-PI staining further revealed a prominent increase in the number of necrotic cells at 4-h CIT, thus suggesting that most of the cells undergo cell death within a few hours of cold ischemic injury. Conclusions: We thus concluded that CIT significantly lowers the cellular senescence in lung tissues and must be considered as a confounding factor for mechanistic studies in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.