Abstract
BackgroundCold-induced vasodilation (CIVD) occurs after blood vessels in the skin are constricted due to local cold exposure. Although many CIVD studies have been conducted, the underlying molecular mechanisms are yet to be clarified. Therefore, we explored genetic variants associated with CIVD response using the largest-scale dataset reported to date in a CIVD study involving wavelet analysis; thus, the findings improve our understanding of the molecular mechanisms that regulate the CIVD response.MethodsWe performed wavelet analysis of three skin blood flow signals [endothelial nitric oxide (eNO)-independent, eNO-dependent, and neurogenic activities] during finger cold-water immersion at 5 °C in 94 Japanese young adults. Additionally, we conducted genome-wide association studies of CIVD using saliva samples collected from the participants.ResultsWe found that the mean wavelet amplitudes of eNO-independent and neurogenic activities significantly increased and decreased prior to CIVD, respectively. Our results also implied that as many as ~ 10% of the Japanese subjects did not show an apparent CIVD response. Our genome-wide association studies of CIVD using ~ 4,040,000 imputed data found no apparent CIVD-related genetic variants; however, we identified 10 genetic variants, including 2 functional genes (COL4A2 and PRLR) that are associated with notable blunted eNO-independent and neurogenic activity responses in individuals without CIVD response during local cold exposure.ConclusionsOur findings indicate that individuals without CIVD response differentiated by genotypes with COL4A2 and PRLR genetic variants exhibited notable blunted eNO-independent and neurogenic activity responses during local cold exposure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have