Abstract

ABSTRACTPlant acclimation to freezing temperatures is very complex. Many temperate plants increase in freezing tolerance upon exposure to a period of low but non‐freezing temperatures, an adaptive process known as cold acclimation. This acclimation phenomenon has encouraged investigations of physiological, biochemical, and molecular changes that are associated with the development of freezing tolerance. Although many biochemical and gene‐expression changes occur during cold acclimation, few have been unequivocally demonstrated to contribute to the development of freezing tolerance. However, in the last few years, exciting new progress has been made through the use of mutational analysis and molecular genetic approaches. We now recognize that several interacting signal pathways are activated to bring about cold acclimation and ensure the winter survival of plants. The challenge for the future is to understand these pathways at a mechanistic level. Facile map‐based cloning in Arabidopsis and techniques (such as DNA micro‐arrays) for transcript profiling will provide the tools needed for this task.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.