Abstract

Behçet disease (BD) is a chronic, inflammatory, and multisystemic condition with an uncertain pathogenesis. One of the major immunologic findings in BD pathogenesis is increase in activity of neutrophil. An increase in the cytosolic free Ca²⁺[Ca²⁺](i) concentration that induces Ca²⁺ signaling is an important step that participates in the neutrophil activation and reactive oxygen species production that leads to tissue damage in body cells. We aimed to investigate the effects of colchicine on oxidative stress and Ca²⁺ release in serum and neutrophil of BD patients with active and inactive periods. Twelve Behçet patients (6 active and 6 inactive) and 6 control subject were included in the study. Disease activity was considered by clinical findings. Serum and neutrophil samples were obtained from the patients and control subjects. Neutrophils from patients with active BD were divided into three subgroups and were incubated with colchicine, verapamil + diltiazem, and colchicine + verapamil + diltiazem, respectively. Erythrocyte sedimentation rate, leucocytes counts, serum C-reactive protein, neutrophil, and serum lipid peroxidation and intracellular Ca²⁺ release levels were higher in active and inactive groups than in the control group, although their levels were lower in active group than in inactive group. However, neutrophil Ca²⁺ release levels were decreased in colchicine, verapamil + diltiazem, and colchicine + verapamil + diltiazem groups group compared to active group. Serum glutathione, vitamin A, vitamin E, and β-carotene concentrations were lower in active and inactive groups than in the control group, although serum vitamin E and β-carotene concentrations were higher in the inactive group than in the active group. Neutrophil and serum glutathione peroxidase activity within the three groups did not change. In conclusion, we observed the importance of Ca²⁺ influx into the neutrophils and oxidative stress in the pathogenesis and activation of the patients with BD. Colchicine induced protective effects on oxidative stress by modulating Ca²⁺ influx in BD patients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.