Abstract

Drug delivery through electroporation could be highly beneficial for the treatment of different types of diseased tissues within the human body. In this work, a mathematical model of reversible tissue electroporation is presented for injecting drug into the diseased cells. The model emphasizes the tissue boundary where the drug is injected as a point source. In addition, the effect of drug loss at tissue boundaries through extracellular space is studied elaborately. Multiple pulses are applied to deliver a sufficient amount of drug into the targeted cells. The set of differential equations that model the physical circumstances are solved numerically. This model obtains a mass transfer coefficient (MTC), in terms of pore fraction coefficient and drug permeability that controls the drug transport from extracellular to intracellular space. The drug penetration throughout the tissue is captured for the application of different pulses. The boundary effects on drug concentration are highlighted in this study. The advocated model is able to perform homogeneous drug transport into the cells so that the affected tissue is treated completely. This model can be applied to optimize clinical experiments by avoiding the lengthy and costly in vivo and in vitro experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.