Abstract

Bone marrow mesenchymal stem cells (BMSCs) have been widely recognized as a highly promising option for cell-based tissue engineering therapy targeting osteoporosis. However, the osteogenic differentiation of BMSCs is impeded by the limited viability and diminished capacity for bone formation within the osteoporotic microenvironment. In this study, the COL6A3 gene was confirmed through an extensive analysis of the preceding single-cell sequencing database. The generation of an inflammatory microenvironment resembling osteoporotic cell transplantation was achieved by employing lipopolysaccharide (LPS). A lentivirus targeting the COL6A3 gene was constructed, and a Western blotting assay was used to measure the marker proteins of osteogenesis, adipogenesis, and mitophagy. Immunofluorescence was utilized to observe the colocalization of mitochondria and lysosomes. The apoptosis rate of each group was evaluated using the TUNEL assay, and the mitochondrial membrane potential was assessed using JC-1 staining. This investigation discovered that the impaired differentiation capacity and decreased viability of BMSCs within the inflammatory microenvironment were markedly ameliorated upon overexpression of the specific COL6A3 gene. Moreover, the administration of COL6A3 gene overexpression successfully mitigated the inhibitory impacts of LPS on mitophagy and the expression of inflammatory mediators, specifically inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), in BMSCs. To clarify the underlying mechanism, the role of mitophagy during the differentiation of COL6A3 gene-modified BMSCs in the inflammatory microenvironment was evaluated using the mitophagy inhibitor Mdivi-1. In the context of lipopolysaccharide (LPS) stimulation, COL6A3 enhances the differentiation of BMSCs into osteogenic and adipogenic lineages through the promotion of mitophagy and the maintenance of mitochondrial health. Our findings may provide a novel therapeutic approach utilizing stem cells in the treatment of osteoporosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call