Abstract
The inherent short‐term transience of renewable energy sources causes significant challenges for the electricity grids. Energy storage systems that can simultaneously provide high power and high energy efficiency are required to accommodate the intermittent renewables. Herein, an ultrafast and high‐capacity aqueous proton battery is developed based on the organic pyrene‐4,5,9,10‐tetraone (PTO) anode. The co‐insertion of H2O molecules and proton into the PTO organic anode effectively reduces the interfacial resistance between the anode and electrolytes, and achieves an unprecedented rate capability up to 250 C and as short as 7 s per charge/discharge. A PTO‐based full cell exhibits an outstanding power density (>104 W kg−1) comparable to supercapacitors. The full utilization of the four C=O groups in PTO molecule during cycling enables the highest capacity (85 mAh g−1) reported for proton batteries to date. This study represents a significant leap forward in the exploitation of ultrafast electrochemical energy storage and accelerates the development of intermittent grid‐scale energy storage technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.