Abstract

Plants are highly affected by salinity, but some plant growth-promoting bacteria (PGPB) may trigger induced systemic tolerance (IST), conferring protection against abiotic stresses. We investigated plant mechanisms under saline stress (170mM NaCl) when maize was singly or co-inoculated with Azospirillum brasilense strains Ab-V5 and Ab-V6 and Rhizobium tropici strain CIAT 899. Under greenhouse conditions, plants responded positively to inoculation and co-inoculation, but with differences between strains. Inoculation affected antioxidant enzymes that detoxify reactive oxygen species (ROS) - ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) - mainly in leaves. Proline contents in leaves and roots and malondialdehyde (MDA) in leaves - plant-stress-marker molecules - were significantly reduced due to the inoculation, indicating reduced need for the synthesis of these molecules. Significant differences were attributed to inoculation in the expression of genes related to antioxidant activity, in general with upregulation of APX1, CAT1, SOD2 and SOD4 in leaves, and APX2 in roots. Pathogenesis-related genes PR1, prp2, prp4 and heat-shock protein hsp70 were downregulated in leaves and roots, indicating that inoculation with PGPB might reduce the need for this protection. Together the results indicate that inoculation with PGPB might provide protection from the negative effects of saline stress. However, differences were observed between strains, as A. brasilense Ab-V5 did not show salt tolerance, while the best inoculation treatments to mitigate saline stress were with Ab-V6 and co-inoculation with Ab-V6+CIAT 899. Inoculation with these strains may represent an effective strategy to mitigate salinity stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call