Abstract

The co-disposal of solid waste by industrial kilns is presently attracting increasing attention. In this study, we investigate the co-disposal of solid waste, i.e. converter ash (CA), sintered ash (SA), blast furnace bag ash (BA), and municipal solid waste incineration fly ash (MSWIFA), under simulated blast furnace ironmaking conditions. The results show that it is feasible to use blast furnace to treat MSWIFA, but the stability of temperature field should be controlled in the process of co-disposal. With the increase of temperature, the conversion rate of NO decreased to 16.4%, and ZnFe2O4 became the main mineral composition, accounting for 75.53%. Corresponding to the flue gas corrosion condition of solid waste treatment, it is found that the corrosion resistance of the furnace material TH347H is better than 20G. Finally, based on the experimental data, the nested optimization algorithm of machine learning model is established to achieve the reverse output of optimal conditions. Overall, the study provides theoretical support and methodology guidance for the co-disposal of solid waste in blast furnaces in providing support for the further development of co-disposal of solid waste in industrial kilns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.