Abstract
For a strong Markov process on the line with continuous paths the Karlin–McGregor determinant formula of coincidence probabilities for multiple particle systems is extended to allow the individual component processes to start at variable times and run for variable durations. The extended formula is applied to a variety of combinatorial problems including counts of non-crossing paths in the plane with variable start and end points, dominance orderings, numbers of dominated majorization orderings, and time-inhomogeneous random walks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.