Abstract

Electron-ion momentum spectroscopy is used to investigate the correlated electronic and nuclear motion in fragmentation of H2 in 4 x 10(14) W/cm(2), 25 fs laser pulses at 795 nm. Reaction channel dependent photoelectron spectra indicate that besides the main, stepwise H2 ionization H2(+) dissociation mechanism resulting in the products H(1s) + H(+) + e(-) a second new mechanism has to be assumed. The momentum distribution of H(+) ions in the dissociation channels H(1s) + H(+) + e(-) and 2H(+) + 2e(-) is found to be independent of the kinetic energy of the photoelectrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.